by admin

LibGDX game development with android studio – Creating Super Mario Bros

November 3, 2016 in Game Engines, Java, libGDX, Source Code, Tips & Tricks, Tutorial by admin

libgdx-logoA nice Youtube series of 32 videos by Brent Aureli about developing a Super Mario Bros game step by step using LibGDX and Android Studio. The videos include information about setting up libGDX with Android Studio, screens, viewports, aspect ratios, how to create a HUD, creating and rendering tilemaps, Box2D, spritesheeets and texture packer, animations, collisions, sound and music, moving & spawning items, and various other topics.

Read the rest of this entry →

Modern OpenGL 08 – Even More Lighting: Directional Lights, Spotlights, & Multiple Lights

April 30, 2015 in OpenGL by Adrian Marius

In this article, we will be adding directional lights, spotlights, and allowing for multiple lights instead of just one. This is the final article on lighting – at least for a while.

by admin

Disabling vsync in OpenGL using GLX

November 10, 2014 in C, Code Snippets, gpu, OpenGL, Programming, Source Code, Tips & Tricks by admin

openglQuick code snippet about disabling VSync with GLX, using glXSwapIntervalEXT, glXSwapIntervalMESA or glXSwapIntervalSGI  functions.

For more information ,follow this link.
Read the rest of this entry →

by admin

Ocean Wave Simulation in WebGL

November 26, 2013 in Code Snippets, OpenGL by admin

webglPhysically based ocean wave simulation in pure WebGL. http://david.li/waves.

by admin

Khronos Releases OpenGL 4.4 Specification

July 22, 2013 in News, OpenGL by admin

openglJuly 22nd 2013 – SIGGRAPH – Anaheim, CA – The Khronos™ Group today announced the immediate release of the OpenGL® 4.4 specification, bringing the very latest graphics functionality to the most advanced and widely adopted cross-platform 2D and 3D graphics API (application programming interface). OpenGL 4.4 unlocks capabilities of today’s leading-edge graphics hardware while maintaining full backwards compatibility, enabling applications to incrementally use new features while portably accessing state-of-the-art graphics processing units (GPUs) across diverse operating systems and platforms. Also, OpenGL 4.4 defines new functionality to streamline the porting of applications and titles from other platforms and APIs. The full specification and reference materials are available for immediate download athttp://www.opengl.org/registry.

In addition to the OpenGL 4.4 specification, the OpenGL ARB (Architecture Review Board) Working Group at Khronos has created the first set of formal OpenGL conformance tests since OpenGL 2.0. Khronos will offer certification of drivers from version 3.3, and full certification is mandatory for OpenGL 4.4 and onwards. This will help reduce differences between multiple vendors’ OpenGL drivers, resulting in enhanced portability for developers.

“The delivery of conformance tests for OpenGL 4.4 is a significant milestone – as it is vital for developers to be able to rely on the API they are trusting to accelerate their content across multiple platforms,” said Barthold Lichtenbelt, OpenGL ARB working group chair. “The OpenGL ARB is committed to continue to deepen communications with the developer community so we can continue to build OpenGL functionality that creates real-world business opportunities for the 3D industry.”

New functionality in the OpenGL 4.4 specification includes:

  • Buffer Placement Control (GL_ARB_buffer_storage)
    Significantly enhances memory flexibility and efficiency through explicit control over the position of buffers in the graphics and system memory, together with cache behavior control – including the ability of the CPU to map a buffer for direct use by a GPU.
  • Efficient Asynchronous Queries (GL_ARB_query_buffer_object)
    Buffer objects can be the direct target of a query to avoid the CPU waiting for the result and stalling the graphics pipeline. This provides significantly boosted performance for applications that intend to subsequently use the results of queries on the GPU, such as dynamic quality reduction strategies based on performance metrics.
  • Shader Variable Layout (GL_ARB_enhanced_layouts)
    Detailed control over placement of shader interface variables, including the ability to pack vectors efficiently with scalar types. Includes full control over variable layout inside uniform blocks and enables shaders to specify transform feedback variables and buffer layout.
  • Efficient Multiple Object Binding (GL_ARB_multi_bind)
    New commands which enable an application to bind or unbind sets of objects with one API call instead of separate commands for each bind operation, amortizing the function call, name space lookup, and potential locking overhead.  The core rendering loop of many graphics applications frequently bind different sets of textures, samplers, images, vertex buffers, and uniform buffers and so this can significantly reduce CPU overhead and improve performance.
  • Streamlined Porting of Direct3D applications
    A number of core functions contribute to easier porting of applications and games written in Direct3D including GL_ARB_buffer_storage for buffer placement control, GL_ARB_vertex_type_10f_11f_11f_rev which creates a vertex data type that packs three components in a 32 bit value that provides a performance improvement for lower precision vertices and is a format used by Direct3D, and GL_ARB_texture_mirror_clamp_to_edge that provides a texture clamping mode also used by Direct3D.

Extensions released alongside the OpenGL 4.4 specification include:

  • Bindless Texture Extension (GL_ARB_bindless_texture)
    Shaders can now access an effectively unlimited number of texture and image resources directly by virtual addresses.  This bindless texture approach avoids the application overhead due to explicitly binding a small window of accessible textures.  Ray tracing and global illumination algorithms are faster and simpler with unfettered access to a virtual world’s entire texture set.
  • Sparse Texture Extension (GL_ARB_sparse_texture)
    Enables handling of huge textures that are much larger than the GPUs physical memory by allowing an application to select which regions of the texture are resident for ‘mega-texture’ algorithms and very large data-set visualizations.

Industry Support

“AMD has a long tradition of supporting open industry standards, and congratulates the Khronos Group on the announcement of the OpenGL 4.4 specification for state-of-the-art graphics processing,” said Matt Skynner, corporate vice president and general manager, Graphics Business Unit, AMD.  “Maintaining and enhancing OpenGL as a strong and viable graphics API is very important to AMD in support of our APUs and GPUs. We’re proud to continue support for the OpenGL development community.”

“We worked closely with Khronos on OpenGL 4.4, so we wanted to make sure the day it was announced we had compliant drivers for our Fermi and Kepler GPUs,” said Tony Tamasi, senior vice president, Content and Technology at NVIDIA. “We’re also working to bring support to Tegra, so developers can create amazing content that scales from high-end PCs down to mobile devices.” (These products are based on the published OpenGL 4.4 Specification, and are submitted to, and are expected to pass, the Khronos Conformance Testing Process. Current conformance status can be found at www.khronos.org/conformance.)

Source: here.

by admin

Khronos Releases OpenCL 2.0

July 22, 2013 in News, OpenCL, OpenGL by admin

openclJuly 22nd 2013 – SIGGRAPH – Anaheim, CA – The Khronos™ Group today announced the ratification and public release of the OpenCL™ 2.0 provisional specification. OpenCL 2.0 is a significant evolution of the open, royalty-free standard that is designed to further simplify cross-platform, parallel programming while enabling a significantly richer range of algorithms and programming patterns to be easily accelerated. As the foundation for these increased capabilities, OpenCL 2.0 defines an enhanced execution model and a subset of the C11 and C++11 memory model, synchronization and atomic operations. The release of the specification in provisional form is to enable developers and implementers to provide feedback before specification finalization, which is expected within 6 months. The OpenCL 2.0 provisional specification and reference cards are available at www.khronos.org/opencl/.

“The OpenCL working group has combined developer feedback with emerging hardware capabilities to create a state-of–the-art parallel programming platform – OpenCL 2.0,” said Neil Trevett, chair of the OpenCL working group, president of the Khronos Group and vice president of mobile content at NVIDIA. “OpenCL continues to gather momentum on both desktop and mobile devices. In addition to enabling application developers it is providing foundational, portable acceleration for middleware libraries, engines and higher-level programming languages that need to take advantage of heterogeneous compute resources including CPUs, GPUs, DSPs and FPGAs.”

Updates and additions to OpenCL 2.0 include:

  • Shared Virtual Memory
    Host and device kernels can directly share complex, pointer-containing data structures such as trees and linked lists, providing significant programming flexibility and eliminating costly data transfers between host and devices.
  • Dynamic Parallelism
    Device kernels can enqueue kernels to the same device with no host interaction, enabling flexible work scheduling paradigms and avoiding the need to transfer execution control and data between the device and host, often significantly offloading host processor bottlenecks.
  • Generic Address Space
    Functions can be written without specifying a named address space for arguments, especially useful for those arguments that are declared to be a pointer to a type, eliminating the need for multiple functions to be written for each named address space used in an application.
  • Images
    Improved image support including sRGB images and 3D image writes, the ability for kernels to read from and write to the same image, and the creation of OpenCL images from a mip-mapped or a multi-sampled OpenGL texture for improved OpenGL interop.
  • C11 Atomics
    A subset of C11 atomics and synchronization operations to enable assignments in one work-item to be visible to other work-items in a work-group, across work-groups executing on a device or for sharing data between the OpenCL device and host.
  • Pipes
    Pipes are memory objects that store data organized as a FIFO and OpenCL 2.0 provides built-in functions for kernels to read from or write to a pipe, providing straightforward programming of pipe data structures that can be highly optimized by OpenCL implementers.
  • Android Installable Client Driver Extension
    Enables OpenCL implementations to be discovered and loaded as a shared object on Android systems.

OpenCL SPIR 1.2 Provisional Specification

In addition, the OpenCL Working Group also today released the OpenCL SPIR 1.2 provisional specification for public review. ‘SPIR’ stands for Standard Portable Intermediate Representation and is a portable non-source representation for OpenCL 1.2 device programs. It enables application developers to avoid shipping kernel source and to manage the proliferation of devices and drivers from multiple vendors. OpenCL SPIR will enable consumption of code from third party compiler front-ends for alternative languages, such as C++, and is based on LLVM 3.2. Khronos has contributed open source patches for Clang 3.2 to enable SPIR code generation.

Industry Support

“These 2 new OpenCL specifications will allow software developers to accelerate a much wider variety of applications on a greater range of devices than previously possible. OpenCL 2.0 will allow applications to process more complex data and algorithms in parallel than was possible in previous standards, while OpenCL SPIR will allow a variety of different programming languages to be compiled directly into OpenCL code for heterogeneous systems,” said Andrew Richards, CEO of Codeplay. “These are 2 big steps forwards to enable software developers to embrace heterogeneous platforms and Codeplay is actively involved in developing for both already.”

“Intel has been deeply involved in shaping new OpenCL 2.0 features like Shared Virtual Memory and OpenCL SPIR”, said Jonathan Khazam, vice president and general manager of Intel’s Visual & Parallel Computing Group. ”We are very excited about the improved programmability of OpenCL 2.0 and the potential to create new experiences with Intel® Iris™ Graphics Products.”

Tony King-Smith, EVP marketing for Imagination Technologies, said: “As a long-standing Promoter, Imagination is delighted to see Khronos release this major upgrade to the OpenCL API standard.  We see an ever widening portfolio of markets relevant to OpenCL, from mobile and consumer multimedia-rich devices through automotive infotainment up to advanced cloud servers and supercomputers. OpenCL is gaining traction among our customers as a means to deliver high-performance compute on our widely deployed PowerVR GPUs as well as our MIPS CPUs. Indeed we have been among the first to enable OpenCL in GPUs for mobile and embedded SoC devices already in production, including some of the leading smartphones and tablets shipping today. We have also been one of the first to demonstrate the significant power saving advantages of OpenCL on GPU running alongside OpenGL ES in real applications – a benefit often overlooked by application developers today. We look forward to continued industry momentum behind OpenCL as a key enabling API for GPU compute and heterogeneous processing.”

“The ability to perform compute-intensive tasks in parallel, using virtually any processor present in the device opens the door for significant performance and functionality improvements in several industries from Automotive to SmartTVs, game consoles and the smartphones. Vivante’s GPU family have been utilizing OpenCL API for long time and we continue to be in forefront to support this new major API version as it will further improve the flow of getting even more complex things done, much faster and better,” said Weijin Dai, CEO of Vivante Corp. “We’re pleased to equip our customers with our GPUs that are faster, smaller and cooler when we see OpenCL to become a significant standard in our customers’ multi-core implementations.”

Source: here.

by admin

OpenGL tutorials with inline WebGL demonstrations

July 17, 2013 in OpenGL, Tutorial by admin

openglThis guide will teach you the basics of using OpenGL to develop modern graphics applications. There are a lot of other guides on this topic, but there are some major points where this guide differs from those. We will not be discussing any of the old parts of the OpenGL specification. That means you’ll be taught how to implement things yourself, instead of using deprecated functions like glBegin and glLight. Anything that is not directly related to OpenGL itself, like creating a window and loading textures from files, will be done using a few small libraries.

http://open.gl/

 

 

by admin

Mesa 3D 9.1 brings OpenGL 3.1 support on Radeon GPUs

March 7, 2013 in News, OpenGL by admin

The 3D graphics drivers that are available in Mesa 3D 9.1 offer improved support for current and expected-soon graphics chips and promise enhanced 3D performance. The new version of the graphics library, which is typically used by default by Linux distributions for their 3D drivers, now includes an OpenGL driver that, together with a driver in Linux 3.8, supports the graphics core of Intel’s Haswell processors. These processors are scheduled to be launched as Core i-4000s in a few months and will supersede Intel’s current “Ivy Bridge” generation.

Mesa 3D’s r600 driver for the graphics chips in the Radeon HD 2000 to 6000 series now supports OpenGL 3.1; the i965 driver for recent Intel chips has offered this functionality since Mesa 3D 9.0. In version 9.1, the driver for the Radeon X1000 series supports multi-sample anti-aliasing (MSAA); in addition, the opinion in developer circles is that the driver for Radeon’s Southern Islands graphics chips generation (HD7750 and newer Radeon HD cards) has made progress and is gradually getting ready for production use. The driver for Intel graphics cores in the 2000, 2500, 3000 and 4000 HD Graphics series now supports OpenGL ES 3.0, and the developers have added a range of improvements to the Nouveau OpenGL driver. The new version also includes basic components to support OpenGL 3.2 and 3.3, which several developers are currently implementing in Mesa 3D.

Mesa 3D 9.1 is classed as a developer version; stability-conscious users should stick with the latest edition in the 9.0 line or wait for version 9.1.1. However, some distributors will likely integrate the new version in the near future. Mesa 3D 9.1 can be downloaded from the freedesktop.org FTP server.

Source: here.

Building a sony ps4 like Development Environment

March 6, 2013 in Linux, OpenGL, Tutorial by Adrian Marius

I will take the ps4 specs and build a Development Environment and it will be good for testing your games too

  • 8-core x86-64 CPU using AMD Jaguar cores (built by AMD)
  • High-end PC GPU (also built by AMD), delivering 1.84TFLOPS of performance
  • Unified 8GB of GDDR5 memory for use by both the CPU and GPU with 176GB/s of memory bandwidth
  • Large local hard drive

What I will need?

  1. I will choose the highest AMD core cpu that i could find on the Romanian market : AMD FX X8 8350.
  2. For GPU we need a Radeon-HD-7870 I couldn’t find one with 8G of ram but for the moment one with 3G of GDDR5 should be enough , if in doubt buy two of them and link them in crossfire.
  3. Memory , I guess you need uncompressed textures and large scene maps so i would go with 32G of ddr3.
  4. Large local drive: here you can choose any drive that is larger than 1-2T.
  5. For motherboard i choose: ASROCK 990FX EXTREME4, Socket AM3+ i like that there is plenty of space for videocards 3 at least.
  6. For OS i choose Lubuntu/Xubuntu 12.10/13.04 or Debian testing amd64 for opengl 4.x programming and stability.

 

 

by admin

Modern OpenGL tutorials

February 14, 2013 in Tutorial by admin

A series of articles about modern OpenGL on Mac, with a focus on making games can be found here. All the code is open source, and downloadable from github.

 
Skip to toolbar